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We propose that a two-dimensional electric network may be used for fundamental studies of wave function
properties, transport, and related statistics. Using Kirchhoff’s current law and thejv method we find that the
network is analogous to a discretized Schrödinger equation for quantum billiards and dots. Thus complex
electric potentials play the role of quantum mechanical wave functions. Ways of realizing the electric network
are discussed briefly. The role of symmetries is outlined, and a direct way of selecting states with a given
symmetry is presented.
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I. INTRODUCTION

Analogs to quantum mechanicalsQMd billiards have
proven useful for experimental studies of quantum chaos,
wave function morphology, current statistics, vortex forma-
tion, and other topological issues. An advantage in going
from the mesoscopic to macroscopic classical systems is that
experimental conditions may be controlled preciselyf1,2g
and one may readily observe eigenfunctions, both their am-
plitude and phase, current, etc. For these reasons planar mi-
crowave cavities have been studied experimentally in, for
example, Refs.f3–7g. The stationary Helmholtz equation for
a perpendicular electric fieldE and wave numberk

fD + k2gE = 0 s1d

coincides with the time-independent Schrödinger equation
for hard-walled quantum billiardsf1g. Hence, micro- and
matter waves in billiards are expected to behave in the same
manner. There are also other classical wave analogs in for
example acoustics, electromechanical systems, and surface
waves in water vessels with arbitrary shapef1,2,8–10g.

Here we propose another kind of emulation of quantum
billiards based on electric networks. The idea behind this
choice is the following. In numerical simulations of a quan-
tum billiards one often relies on the finite difference method
f11g. This implies that a computational gridsi , jd srow, col-
umnd is generated in the billiard, and an equation is formed
at each such numerical grid point. Usually, only nearest
neighbor interactions are considered. This implies that

Dfsx,yd → f i+1,j + f i−1,j + f i,j+1 + f i,j−1 − 4f i,j

a2 s2d

giving the five-point approximation of the Schrödinger equa-
tion for QM billiards

−
q2

2ma2sci,j−1 + ci−1,j + ci,j+1 + ci+1,j − 4ci,jd = Eci,j s3d

where ci,j is the value of the wave function at grid point
si , jd , a the distance between nearest neighbors,m the par-
ticle mass, andE the energy eigenvalue. The discretized form
in Eq. s3d now suggests that various types of lattice analogs
to quantum billiards may be conceived. An obvious candi-
date is a mechanical system with springs and masses. How-

ever, Eq.s3d is also of the same form as the tight-binding
model for a lattice of resonating monovalent atoms. We may
therefore look for other discrete lattices constructed from
identical objects with some characteristic oscillatory behav-
ior. For example, an elementary, undamped electric circuit
consisting of just a capacitorC and inductanceL has the
natural frequencyf0=1/s2pÎLCd. If N objects of this kind
are brought together, the interactions between them will give
rise toN collective oscillatory modes. We will therefore dis-
cuss how arrays of resonant electric circuits, constructed in
close resemblance with the discretized Schrödinger equation
in Eq. s3d, represent interesting alternatives for emulating
wave mechanicsf12g. We will demonstrate that this type of
systems offer rich possibilities for experimental studies of
wave functions and, in particular, current morphology and
statistics.

The idea about equivalent electric circuits to represent the
Schrödinger equation is actually quite an old one, and was
discussed by Kronf13g already in 1945. Later Manolache
and Sanduf14g have investigated the eigenmodes of closed
symmetric cavities. Statistical aspects are raised in the recent
work by Bulgakov, Maksimov, and Sadreevf15g. This work
and the present one are supplementary. Here we focus on
wave function and current statistics and how symmetry may
be probed by external ac voltage probes.

The paper is organized in the following way. In Sec. II we
describe the design of equivalentRLC networks. Eigen-
modes and resonant features are discussed in Sec. III for
open and closed “electric billiards.” The relation between the
quantum mechanical probability current and its network ana-
log is outlined in Sec. IV. In Sec. V we propose a way to
disentangle different symmetry states in billards with exter-
nal driving voltages. Section VI focuses on statistics and,
finally, Sec. VII contains a discussion and concluding re-
marks.

II. AN ELECTRIC NETWORK ANALOG

An electrical grid is designed according to Fig. 1. The
grid consists of capacitancesC, inductancesL, and resis-
tancesR. Here, we focus on a grid shaped geometrically as in
Fig. 2. This is the same shape as used in the microwave
studies in Refs.f3–6g, originally chosen for studies of wave

PHYSICAL REVIEW E 71, 056206s2005d

1539-3755/2005/71s5d/056206s11d/$23.00 ©2005 The American Physical Society056206-1



function scarring in a quantum dot with two leadsf16g. Con-
sequently there is experimental work for comparison. There
are also quantum mechanical computationsf17g for the same
kind of billiard in which source and drain are emulated by
small imaginary potentials ±iG in the regions of the two
leads. Because of the shape of the cavity, effectively an open
half stadium, we will recover regular as well as irregular
modes. To disentangle symmetries we will also consider an
entire stadium with up to four external driving voltages.

As above, all grid points in Fig. 2 are grounded via a
capacitor and connected to its neighboring grid points
through an inductance in series with a resistance. The resis-
tances are important for a more realistic modeling of the
coils used in the practical case. Other phenomena, such as
leakage and resistance in the capacitances, can also easily be
added as a parallel and/or a serial resistance to the capaci-
tances if desired. Leakage in billiards may be simulated by
selecting adequate values for the resistances.

To probe the dynamics of the networked billiard one or
multiple grid points are selected, to which an alternating
sinusoidal voltage in series with a load resistance is attached
as in Fig. 3. The inward current through this resistance as a
function of the angular frequencyv will later prove useful.
Using the jv method and Kirchhoff’s current lawf18g, i.e.,

the sum of all currents into a nodep equals zero, equations
of the form

o
k

Ik,p = o
k

Vk − Vp

Zkp
= 0 s4d

are obtained;k runs over all directions from nodep in which
a current can flow, andZkp is the impedance between the
potentialsVk andVp.

For a typical internal point, wherei gives the vertical and
j the horizontal position, the pairsi , jd gives the location of
the point in the gridssee Fig. 1d. By using the notationZl
=R+ jvL andZc=1/ jvC, wherej =Î−1, L the inductance,C
the capacitance, andR the resistance of the components in
question, equations of the form

Vi,j−1 − Vi,j

Zl
+

Vi−1,j − Vi,j

Zl
+

Vi,j+1 − Vi,j

Zl
+

Vi+1,j − Vi,j

Zl

+
0 − Vi,j

Zc
= 0 s5d

are generated. This equation may be rewritten as

− sVi,j−1 + Vi−1,j + Vi,j+1 + Vi+1,j − 4Vi,jd = −
Zl

Zc
Vi,j , s6d

which clearly is of the same form as Eq.s3d.

FIG. 1. Internal points in a grid.

FIG. 2. Modeling of a “two-lead” cavity in
the shape of an open quantum dot.

FIG. 3. Grid with connected voltage.
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For a node connected to a source instead of having a
neighboring node atsi −1,jd as in Fig. 3, we get

Vi,j−1 − Vi,j

Zl
+

s0 + Ed − Vi,j

Rload
+

Vi,j+1 − Vi,j

Zl
+

Vi+1,j − Vi,j

Zl

+
0 − Vi,j

Zc
= 0 s7d

whereE is the amplitude of the driving voltage.
The size of the grid determines the resolution of the wave

mechanical state we wish to emulate and is comparable to
digital sampling of a propagating wave. This means that
higher frequencies require a larger grid to get the desired
resolution, but also that effects of sampling, such as alias
distortion, might occurf18g.

Below we will see that one may identify the quantum
mechanical wave functionc with the potential fieldV, and
that the energyE of the quantum mechanical system corre-
sponds to the squared angular frequencyv2.

III. NETWORK EIGENMODES AND RESONANCES

Here, two ways of finding the modes of the networked
billiard are presented, i.e., for an “open” billiard with exter-
nal driving voltages and for a “closed” one without them.

In open microwave cavities the characteristic modes are
found as peaks when studying the transmission through the
system as a function of frequencyf1g. A similar plot may be
produced by studying the current

I =
E − Vi,j

Rload
s8d

throughRload as a function of the angular frequency. It turns
out that resonant eigenmodes are found at the minima of this
curve. The current reaches its upper value at low and high
frequencies, which is related to the characteristic perfor-
mance of the components. An inductance behaves as a short
circuit at low frequencies, while a capacitance acts as a short
circuit at high frequencies. This means that the system is
only active in the middle region, resulting in a maximum
current Imax=E/Rload as seen in Fig. 4 at both ends of the
spectrum.

In the second approach, eigenvalues are extracted in the
same way as for a closed quantum billiard. For this purpose
all equations forVi,j must be cast in the same form, and
Dirichlet boundary conditions should be implemented in a

FIG. 5. Grid with alternative boundary conditions.

FIG. 4. sColor onlined A typi-
cal plot of the currentuI u as a func-
tion of v for a small net. Each
minimum is an eigenfrequency.
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slightly different manner. Hence we insert a very small resis-
tanceRgroundbetween the grid point and ground as in Fig. 5.
The equation for a grounded pointsi , jd in Fig. 5 is then

− FVi,j−1 + Vi,j+1 + Vi+1,j − S3 +
1

Rground
DVi,jG = −

Zl

Zc
Vi,j .

s9d

By handling the Dirichlet boundary conditions in this way
the system may be written as an eigenvalue equation

BV = −
Zl

Zc
V s10d

whereB is a matrix corresponding to the HamiltonianH in a
quantum mechanical system. By assuming thatR is small
and may be neglected we haveZl /Zc<−v2LC. Hence solu-
tions V are real and

v =ÎeigsBd
LC

s11d

gives the angular frequencies for the collective eigenstates.
There should, however, be some differences between

modes found from the two separate methods, i.e., with and
without an external driving voltage. When comparing the
values foruVi,ju2, generated by the two different methods one
can hardly see any difference in the cases investigated here.
The actual voltages differ, though. By studying, for example,
the analog to the quantum mechanical probability current,
which is treated below, differences in phase are observed.
Therefore the latter method is suitable for generating images
of eigenmodes, or for finding the angular frequencies at
which they occur.

In Fig. 6 we show the current through the load resistance
and how the resonant modes may be identified as narrow
dips as outlined above. The computations were based on the
device parametersL=10 mH, C=1 mF, R=0.05 mV, Rload
=1 V, andE=10 V, values which are also assumed through-
out the remaining part of our presentation. These values are

FIG. 6. sColor onlined Current
uI u through the load resistance,
with marked dips for a selectedv
region.

FIG. 7. sColor onlined The first eight modes, showinguVu2, to be compared withucu2 in QM. The number of grid pointssi , jd is 100
3100, and the valuesL=10 mH,C=1 mF, andR=0.05 mV were used in the simulations.
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not standard device parameters. However, this is of less con-
cern here since it is really the ratio between them that mat-
ters. The first eight resonant modes, starting with the mode
corresponding to the lowest energy, can be seen in Fig. 7.
Comparisons with microwave measurementsf3,5g and quan-
tum mechanical calculationsf17g verify that uVu2 indeed
mimics ucu2 in a very satisfactory way.

IV. CURRENTS

To investigate further the correspondence betweenc and
V we study the transmission through the system. An analog
to the QM probability current

j =
q

m
Imhc * = cj s12d

is obtained by replacing the wave functionc with our poten-
tial field V. Hence, omitting constants we have

S= ImhV * = Vj s13d

which is, in fact, a Poynting vector for our system. With

]

]x
Vsi, jd ~ sVi,j+1 − Vi,j−1d s14d

we obtain a Poynting vector, which in our system is given by

S< ImSVi,j
* sVi,j+1 − Vi,j−1d

Vi,j
* sVi−1,j − Vi+1,jd

D . s15d

Another, more intuitive way of obtainingS is to study the
complex electrical effectSc given bySc=UI*, and especially
P=RehScj, which is the measured electrical effect. Assigning
to P the direction of the current gives a vector

P = ReSVi,jsVi,j+1−Vi,j−1

2Zl
d*

Vi,jsVi−1,j−Vi+1,j

2Zl
d*
D = ReSVi,jsVi,j+1−Vi,j−1

2s jvL+Rd d*

Vi,jsVi−1,j−Vi+1,j

2s jvL+Rd d*
D .

s16d

By realizing thatR is small and therefore negligible, and
suppressing the factor 2vL in the denominator, we get

P̃ = ReSVi,jsVi,j+1−Vi,j−1

j d*

Vi,jsVi−1,j−Vi+1,j

j d*
D = ImSVi,j

* sVi,j+1 − Vi,j−1d
Vi,j

* sVi−1,j − Vi+1,jd
D

s17d

which is equal toS.

FIG. 8. sColor onlined Poynting vector fields, corresponding to
modes 67, 75, and 175. Grid points indicessi , jd are indicated on the
horizontal and vertical axesscf. Figs. 1 and 2d.

FIG. 9. A desymmetrized two-lead cavity, isolating theodd
wave functions.
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To illustrate the current distribution we show the case
with only one external driving voltage in the grid as in Fig.
2sbd and save the multilead case for the next section. Of
course, with only one external voltage present we break the
symmetry. As the frequency increases the lack of symmetry
becomes, however, less and less prominent. Plots showing
flow patterns analogous to the quantum mechanical probabil-
ity current are displayed in Fig. 8. Similarities with the re-
sults of microwave measurementsf5g and quantum mechani-
cal calculationsf17g are most striking.

V. EXTRACTION OF SYMMETRIES

Identification of modes belonging to a certain symmetry
class in a billiard is often required. An example is statistics,
which many times refer to a particular symmetry class. As
discussed above, we have two ways of finding the character-
istic modes. Consequently there are also two ways of select-
ing the modes belonging to a particular symmetry class.

In the case of level statistics, the eigenvalue approach,
Eqs.s10d ands11d in Sec. III, appears a convenient one from
a computational point of view, since many modes are found
in a relatively short time. Extraction of, for example, odd
modes is done here by “desymmetrizing” the billiard. Dirich-
let boundary conditions are achieved by grounding the bil-
liard along the middle symmetry line, and then by studying
only one-half of the billiard. The desymmetrized billiard is
shown in Fig. 9.

Let us now turn to the other way of finding characteristic
modes by driving the system by external voltages. This ap-
proach is, of course, more realistic when it comes to practical
measurements. It also appears quite elegant. To make the
case a bit more general we now consider a network in the
shape of a full Bunimovich billiardsFig. 10d. The two lines
of symmetry run along the middle of the billiard, one in the
horizontal and one in the vertical direction, dividing the
Bunimovich billiard into four parts; top left, top right, bot-
tom left, and bottom right. By marking each section with
either a “+” or a “−,” we may specify the different symme-
tries. If the same sign occurs on each side of a symmetry
line, the wave function iseven, with respect to this line. On
the other hand, if the signs are different, the wave equation is
odd. The possibilities can be referred to as even/even, even/
odd, odd/even, and odd/oddsreferring to the horizontal/
vertical directiond.

The four different symmetry classes in Fig. 10 are gener-
ated by connecting a voltage to each of the four sections as
in Fig. 11. The external voltages must be connected sym-
metrically, if the desired symmetry class is to be selected.
The phase of the driving voltages is then used to achieve
symmetry or antisymmetry, with respect to the symmetry
lines. One way to view this is by studying the modes given
by each voltage separately, and then add them together by
means of superposition. In this way one understands why
some modes are canceled and others not. For example, if one
drives equal currents into the billiard on each side of a line of
symmetry, modes with a node on the symmetry line will
disappear. At the same time, even wave functions are ampli-
fied.

Thus, we can define a “+” by connecting a voltage driving
a current into the billiard, and a “−” by connecting a voltage
driving a current out of the billiard at a given timet=0. The
situation in Fig. 10sdd, isolating the odd/odd wave functions,
is realized with the network in Fig. 11. We have verified our
approach by explicit numerical calculations. In doing so we
have found that it is important that the external voltages are
placed and driven symmetrically with high precision. For
example, displacing one or more of them gives rise to a
superposition of symmetry classes.

In the same way as proposed here, it should also be pos-
sible to extract states with a particular symmetry for cases
like microwave cavities, elastic membranes, and acoustic
resonators.

FIG. 10. Symmetries in the Bunimovich
billiard.

FIG. 11. A stadium shaped grid giving the odd/odd symmetry
class. The four different positions of the symbolE with respect to
the voltage sources define the phases, in our case equal or opposite.
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VI. STATISTICAL PROPERTIES

Statistical aspects are important signatures of quantum
mechanical systems. In order to validate the present electric
network model we will compare its statistical predictions
with the quantum case. Focus lies on the spacings between
eigenenergies, distributions of wave function amplitudes and
intensities, and statistics for the quantum mechanical prob-
ability current. Ideally our network system should follow the
same statistics as the QM system we intend to emulate. All
statistics presented below refer to the billiard in Fig. 2, with-
out and with external driving voltages, i.e., “closed” or
“open.”

For a classically integrable, i.e., nonchaotic, QM system
with time reversal symmetrysTRSd one expects the Poisson
distribution given byf1,2g

Pssd = e−s s18d

for the distribution of normalized spacingss between
eigenenergies. On the other hand, for an irregular chaotic
system with TRS one finds generally the Wigner-Dyson dis-
tribution

Pssd =
sp

2
exps− ps2/4d. s19d

As mentioned, in our casev2 corresponds to the QM energy
E. Figure 12 shows the distribution of normalized level sepa-
rations for odd states, i.e., states in the half cavity without
external driving voltages as in Fig. 9. Real values forv2 are
computed from Eqs.s10d ands11d in Sec. III. As mentioned
previously

FIG. 13. sColor onlined sad showsuVi,ju2 for a regular resonant eigenmode andsbd for a chaotic resonant mode. The curve inscd andsdd
is the Porter-Thomas distribution in Eq.s20d for sad andsbd, respectively.sed andsfd show the phase of the “wave function”Vi,j for sad and
sbd. The behavior of the statistics inscd, i.e., the way the tail suddenly drops to zero, is a general characteristic for regular modesf10,20g. The
number of grid points is indicated on the horizontal and vertical axes.

FIG. 12. sColor onlined Statis-
tics for the normalized angular
frequency spacingsv2, corre-
sponding to the spacings between
eigenenergies in quantum me-
chanics. The curve is the Wigner-
Dyson distribution given by Eq.
s19d; 1199 spacings for the half
billiard in Fig. 9 were used for
generating the histogram.
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there are both regular and irregular solutions for the systems
at hand. The good agreement between the computed distri-
bution and the Wigner-Dyson expression tells us, however,
that the states are almost exclusively chaotic with TRS.

In quantum mechanics wave function statistics for the dif-
ferent modes are of obvious interest. For a billiard with area
A a distributionPsrd may be produced, wherer=Aucu2, giv-
ing the probability of finding a certain intensityucu2. Psrd
follows the well known Porter-Thomas distributionf1,2g

Psrd =
1

Î2pr
e−r/2 s20d

for systems with TRS. For broken TRS the Thomas-Porter
form is replaced by the exponential Rayleigh distribution

Psrd = e−r. s21d

There is also the case of intermediate statistics as discussed
in f19,20g and references within. Figure 13 shows statistics

FIG. 14. sColor onlined sad showsuVi,ju2 for a regular state withv=26.65 rad/s, andsbd–sed the distributions for the real and imaginary
parts of the potential fieldVi,j, before and after a rotation by the anglea, defined by Eq.s24d. The curves are Gaussian distributions, Eq.s23d,
with parameters given in each subfigure. The number of grid points is indicated on the horizontal and vertical axes.

BENGTSSON, LARSSON, AND BERGGREN PHYSICAL REVIEW E71, 056206s2005d

056206-8



for two resonant modes for an open system, at low and high
frequencies, respectively. The high-frequency mode obvi-
ously obeys the Thomas-Porter distribution to a high degree
of accuracy. In view of the level statistics above chaotic be-
havior is to be expected. The low-frequency mode, on the
other hand, is an example of a regular mode and for this
reason it displays a characteristic dropoff behavior at high
intensitiesf10,20g.

The solutions for the open billiard are complex and TRS
is, in principle, broken. In spite of this, the Thomas-Porter
distribution applies to a high degree of accuracy to the ir-

regular states, for example. To analyze this situation it is
useful to consider the general complex wave functionf19,20g

c = u + iv s22d

whereu is the real and andv the imaginary part, which for
chaotic states are treated as two independent Gaussian fields.
For later reference denote the Gaussian distribution as

FIG. 15. sColor onlined sad showsuVi,ju2 for an irregular state withv=112.41 rad/s, andsbd–sed the corresponding distributions for the
real and imaginary parts of the potential fieldVi,j, before and after a rotation by the anglea, given by Eq.s24d. The curves are Gaussian
distributions, Eq.s23d, with parameters given in each subfigure. The number of grid points are indicated on the horizontal and vertical axes.
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Pssd =
1

sÎ2p
e−ss−md/2s2

s23d

wheres is the standard deviation andm the center value.
Intuitively the relative weights ofu andv indicate which

kind of statistics a particular state obeys. If eitheru or v is
the dominant term, for example, we expect the Thomas-
Porter distribution for an irregular state. On the hand, ifu
and v have more or less equal weights we expect the Ray-
leigh distribution or an intermediate crossover form. To make
this statement valid we must, however, make sure that the
real and imaginary parts in the wave function are statistically
independent as discussed inf19,20g. This is achieved by
multiplying the wave function by the phase factoreia. By
letting k¯l indicate the mean value,a can be written as

a =
1

2
arctanS 2kuvl

kul2 − kvl2D , s24d

giving a rotation of all points by the anglea in the complex
plane. This rotation is in fact derived from the expression
kuvl=0, thus ensuring that the fields are also uncorrelated.
Note that one may instead make the imaginary part dominant
by adding one more rotation with an odd multiple ofp /2. As
indicated already, the Rayleigh distribution instead emerges
when the real and the imaginary parts of the wave function
are of equal magnitude. Hence, neither of the two fields can
be made dominant over the other, and the rotation above only
makes the fields statistically independent.

The fact that the statistics for both real and imaginary
parts of the amplitudes follow a Gaussian distribution has
been verified for numerous resonant modes. Figures 14 and
15 show distributions for the real and imaginary parts of the
amplitudes for two typical modes, both before and after the
rotation given by Eq.s24d. Obviously the real part dominates
by far over the imaginary one after the rotation. This ex-
plains why the resonant modes obey distributions typical for
TRS like the Thomas-Porter distribution. In our computa-
tions we have found that the phase appears to change con-
tinuously, but as soon as a resonant eigenmode appears, the
wave pattern is close to real, i.e., the phase of the amplitude
in each point is close to zero orp.

Finally we consider the quantum mechanical probability
current for an open system, which also follows certain uni-
versal statistics for irregular statesf19,21,22g. Regular states
are discussed in Ref.f23g. One may either study the compo-
nents or the absolute value of the currentj . If the net current
is small the components should obey

Ps jdd =
1

2t
e−u jdu/t s25d

for chaotic statessd indicates the horizontal or the vertical
directiond. At the same time, the absolute value follows the
universal law

Psuj ud =
uj u
t2K0S uj u

t
D s26d

whereK0 is the modified Bessel function of the second kind,
zeroth order, andt is a function depending on the standard

deviation of the wave function. The value oft may be com-
puted from the solutionVi,j, but heret will be treated as a
fitting parameter, used merely to see if the statistics follow
the generic form predicted by the theory.

Figure 16 shows histograms for distributions for a typical
chaotic high-frequency resonant mode withc replaced byV
and j by S. The numerical results for our electric network
obviously agree nicely with theoretical predictions for ran-
dom fields.

VII. DISCUSSION AND CONCLUDING REMARKS

In summary, we have proposed that electrical networks
may be used for fundamental studies of wave function prop-
erties and transport in general and, more specifically, their

FIG. 16. sColor onlined Statistics for a typical high-frequency
mode. The curve insbd is given by Eq.s26d, and the curves inscd
and sdd by Eq. s25d. The fitting parameter ist=2.0.
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mapping onto open quantum dots. By connecting each grid
point to some light source, as for example light-emitting di-
odes, the wave patterns might be observed in real time. The
role of dissipation and breaking of TRS may also be studied
in a controlled way via the resistances. One could also model
any billiard; it is only a question of grounding certain grid
points. In addition to the scientific case our network has ob-
vious pedagogical merits.

There are two wayssat leastd for physically realizing our
net. A first straightforward one is to use passive components
sas in Fig. 1d. Ideally the components should all be identical
but for practical purposes we have made simulations with
randomized valuess±10%d for the components. The grid
was still functional in this case. The demands on the perfor-
mance of components are, however, high. Standard compo-
nents have problems in working over large frequency inter-
vals as their performance deteriorates at higher frequencies.

One may circumvent this problem by working with large
networks in which the eigenstates are more close packed.
Superconducting materials may then be useful to reduceR
and dissipation.

A second way to realize our electric simulator is by using
active components, such as operational amplifiersf18g, to
mimic the behavior of the ordinary components. This second
alternative is the one we believe to be more promising.
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