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Emulation of quantum mechanical billiards by electrical resonance circuits
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We propose that a two-dimensional electric network may be used for fundamental studies of wave function
properties, transport, and related statistics. Using Kirchhoff’s current law angdvth@ethod we find that the
network is analogous to a discretized Schrodinger equation for quantum billiards and dots. Thus complex
electric potentials play the role of quantum mechanical wave functions. Ways of realizing the electric network
are discussed briefly. The role of symmetries is outlined, and a direct way of selecting states with a given
symmetry is presented.
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I. INTRODUCTION ever, Eq.(3) is also of the same form as the tight-binding
Analogs to quantum mechanic4QM) billiards have model for a lattice of resonating monovalent atoms. We may
proven useful for experimental studies of quantum Ch(,iostherefore look for other discrete lattices constructed from

wave function morphology, current statistics, vortex 1Eorm(,:l_i’dentical objects with some characteristic oscillatory behav-
f ! jor. For example, an elementary, undamped electric circuit

tion, and other topological issues. An advantage in goind L ! ) .
from the mesoscopic to macroscopic classical systems is th&Pnsisting of just a capaCI}Q and mduptancd. hgs t.he
experimental conditions may be controlled precisgly?] ~ natural frequencyfo=1/(2amyLC). If N objects of this kind
and one may readily observe eigenfunctions, both their am@"® brought tog'ether, t'he interactions betwgen them will give
plitude and phase, current, etc. For these reasons planar mii$€ t©ON collective oscillatory modes. We will therefore dis-
crowave cavities have been studied experimentally in, fofUSS how arrays of resonant electric circuits, constructed in

example, Refg3-7]. The stationary Helmholtz equation for close resemblance with the discretized Schrodinger equation
a perpen'dicular electric fielH and wave numbek in Eqg. (3), represent interesting alternatives for emulating
wave mechanicfl2]. We will demonstrate that this type of

[A+K]E=0 (1) systems offer rich possibilities for experimental studies of

coincides with the time-independent Schrodinger equatio’@ve functions and, in particular, current morphology and
for hard-walled quantum billiard§1]. Hence, micro- and Statistics. , .

matter waves in billiards are expected to behave in the same | N€ idea about equivalent electric circuits to represent the
manner. There are also other classical wave analogs in fopchrodinger equation is actually quite an old one, and was

example acoustics, electromechanical systems, and surfagiscussed by Kroi13] already in 1945. Later Manolache
waves in water vessels with arbitrary shdfe2,8-10. and Sandy14] have investigated the eigenmodes of closed

Here we propose another kind of emulation of quamtumsymmetric cavities. Statistical aspects are raised in the recent
billiards based on electric networks. The idea behind thigVork by Bulgakov, Maksimov, and Sadrefi5]. This work
choice is the following. In numerical simulations of a quan-2nd the present one are supplementary. Here we focus on
tum billiards one often relies on the finite difference methogWave function and current statistics and how symmetry may
[11]. This implies that a computational grid,j) (row, col- P& Probed by external ac voltage probes.

umn) is generated in the billiard, and an equation is formed , 1€ Paper is organized in the following way. In Sec. Il we

at each such numerical grid point. Usually, only nearesf’esgr'be tge design ?f equwaleﬁtlac_: netwo(;k;. SElgenI-“ f
neighbor interactions are considered. This implies that ~ Modes and resonant features are discussed In Sec. lll for

open and closed “electric billiards.” The relation between the

guantum mechanical probability current and its network ana-

log is outlined in Sec. IV. In Sec. V we propose a way to

- i , L . disentangle different symmetry states in billards with exter-

giving the five-point approximation of the Schrédinger equa-na) griving voltages. Section VI focuses on statistics and,

tion for QM billiards finally, Sec. VII contains a discussion and concluding re-
h?2 marks.

- m('lfi,j—l‘* Yicrj ¥ ijert ey~ ) =y ()
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i+1, i-1, |a,]2+l ij-1 i, (2)

f
Af(X,y) —

. . . . 1. AN ELECTRIC NETWORK ANALOG
where ¢ ; is the value of the wave function at grid point

(i,j), a the distance between nearest neighbarghe par- An electrical grid is designed according to Fig. 1. The

ticle mass, and the energy eigenvalue. The discretized formgrid consists of capacitances, inductanced., and resis-

in Eq. (3) now suggests that various types of lattice analoggancesR. Here, we focus on a grid shaped geometrically as in
to quantum billiards may be conceived. An obvious candi-Fig. 2. This is the same shape as used in the microwave
date is a mechanical system with springs and masses. Howtudies in Refs[3—6], originally chosen for studies of wave
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FIG. 3. Grid with connected voltage.

FIG. 1. Internal points in a grid. the sum of all currents into a nogeequals zero, equations
of the form
function scarring in a quantum dot with two ledd$]. Con- V-V,
sequently there is experimental work for comparison. There > lp= > ——P=p (4)
are also quantum mechanical computatighg for the same k kLo

kind of billiard in which source and drain are emulated byare obtainedk runs over all directions from nodein which

small imaginary potentials it in the regions of the two 5 ¢ rent can flow, and,, is the impedance between the
leads. Because of the shape of the cavity, effectively an ODeBotentialst andV P
o-

half stadium, we will recover regular as well as irregular
modes. To disentangle symmetries we will also consider a
entire stadium with up to four external driving voltages.

For a typical internal point, wheriegives the vertical and
Tthe horizontal position, the palir,j) gives the location of
As above, all grid points in Fig. 2 are grounded via at:hlgfj?lﬂteir?dt;e:%r/lflfgewilgr'e%:Ii}:—luscr;ﬂ;?ﬁdﬂggggg
capacitor and connected to its neighboring grid pOir'tsthe capacitancfe and the resistance'of the components in
through an inductance in series with a resistance. The reSiﬁ'uestion equati’ons of the form
tances are important for a more realistic modeling of the '
coils used in the practical case. Other phenomena, such as V;;_;-V;; N Vi1~ Vij . Vijs1— Vij . Viej = Vi)

leakage and resistance in the capacitances, can also easily be Z Z Z Z

added as a parallel and/or a serial resistance to the capaci-

tances if desired. Leakage in billiards may be simulated by + 0-Vj; -0 5)
selecting adequate values for the resistances. Z.

To probe the dynamics of the networked billiard one or
multiple grid points are selected, to which an alternating
sinusoidal voltage in series with a load resistance is attached Z
as in Fig. 3. The inward current through this resistance as a = (Vij-1+Vi-1j + Vijsr + Visrj = 4Vij) = = Zvi,ju (6)
function of the angular frequenay will later prove useful. ¢
Using thejw method and Kirchhoff’s current lapl8], i.e.,  which clearly is of the same form as E@®).

(2) = (b)

are generated. This equation may be rewritten as

FIG. 2. Modeling of a “two-lead” cavity in
the shape of an open quantum dot.
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FIG. 4. (Color online A typi-
cal plot of the currenfi| as a func-
tion of w for a small net. Each
. minimum is an eigenfrequency.

11A]
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_For a_node conr)ecte_d to a source instead of having a = E-V ®
neighboring node afi—1,j) as in Fig. 3, we get Road
oal
throughR,,,4 @s a function of the angular frequency. It turns
Viii=Vii (O0O+BE)-Vi: Viix1—Vii ViV oad ; e .
1 T ( )~ Vi PR L HELIN P FRLLE P MY out that resonant eigenmodes are found at the minima of this
Z Rioad Z Z curve. The current reaches its upper value at low and high
0-V;. frequencies, which is related to the characteristic perfor-
+—1=0 (7) mance of the components. An inductance behaves as a short

circuit at low frequencies, while a capacitance acts as a short
circuit at high frequencies. This means that the system is

whereE is the amplitude of the driving voltage. only active in the middle region, resulting in a maximum

The size of the grid determines the resolution of the wavéurentma=E/Raq @s seen in Fig. 4 at both ends of the

mechanical state we wish to emulate and is comparable tPECtrUm. _ _
digital sampling of a propagating wave. This means that [N the second approach, eigenvalues are extracted in the

higher frequencies require a larger grid to get the desire§@me way as for a closed quantum billiard. For this purpose
resolution, but also that effects of sampling, such as aliad!! €quations forV;; must be cast in the same form, and
distortion, might occuf18]. Dirichlet boundary conditions should be implemented in a

Below we will see that one may identify the quantum
mechanical wave functiog with the potential fieldv, and
that the energy of the quantum mechanical system corre-
sponds to the squared angular frequeady

IIl. NETWORK EIGENMODES AND RESONANCES

Here, two ways of finding the modes of the networked
billiard are presented, i.e., for an “open” billiard with exter-
nal driving voltages and for a “closed” one without them.

In open microwave cavities the characteristic modes are
found as peaks when studying the transmission through the
system as a function of frequenfy/]. A similar plot may be
produced by studying the current FIG. 5. Grid with alternative boundary conditions.
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slightly different manner. Hence we insert a very small resis- eig(B)
tanceRyoung PEtWeen the grid point and ground as in Fig. 5. w= LC (11)

The equation for a grounded poifitj) in Fig. 5 is then

1 Z
Vij-1+ Vijert Viegj = (3 + Rg—)\/i,j] == Vi
roun

9)

gives the angular frequencies for the collective eigenstates.
There should, however, be some differences between
modes found from the two separate methods, i.e., with and
without an external driving voltage. When comparing the
values for|V; |2, generated by the two different methods one
can hardly see any difference in the cases investigated here.

By handling the Dirichlet boundary conditions in this way The actual voltages differ, though. By studying, for example,

the system may be written as an eigenvalue equation

Z
BV =-2lv (10)
Z;

whereB is a matrix corresponding to the Hamiltonikhin a
guantum mechanical system. By assuming tRat small
and may be neglected we ha¥g Z.~-w»?’LC. Hence solu-
tionsV are real and
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the analog to the quantum mechanical probability current,
which is treated below, differences in phase are observed.
Therefore the latter method is suitable for generating images
of eigenmodes, or for finding the angular frequencies at
which they occur.

In Fig. 6 we show the current through the load resistance
and how the resonant modes may be identified as narrow
dips as outlined above. The computations were based on the
device parameters=10 mH, C=1 mF, R=0.05 m(), Ryaq
=1, andE=10 V, values which are also assumed through-
out the remaining part of our presentation. These values are

100 100 250
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» b ’ . ' .
25 - 25 .
0 0 0
0 25 50 75 100 50 75 100

o

(c) (do 25
100 1000 100
— 300
75 p— 800 75 250
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50 - 0 50 . . . 150
100
25
25 e 200 .
0 0 h 0 0
(9% 25 s0 75 100 (o 25 s0 75 100

FIG. 7. (Color onling The first eight modes, showiny|?, to be compared withy/? in QM. The number of grid pointsi,j) is 100
X100, and the valuek=10 mH,C=1 mF, andR=0.05 n{) were used in the simulations.
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FIG. 8. (Color onling Poynting vector fields, corresponding to
modes 67, 75, and 175. Grid points indi¢eg) are indicated on the

horizontal and vertical axe&f. Figs. 1 and 2
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FIG. 9. A desymmetrized two-lead cavity, isolating tbdd
wave functions.

not standard device parameters. However, this is of less con-
cern here since it is really the ratio between them that mat-
ters. The first eight resonant modes, starting with the mode
corresponding to the lowest energy, can be seen in Fig. 7.
Comparisons with microwave measuremdid$] and quan-
tum mechanical calculationgl7] verify that [V|? indeed
mimics || in a very satisfactory way.

IV. CURRENTS

To investigate further the correspondence betwgemd
V we study the transmission through the system. An analog
to the QM probability current

L
i = Im{y* Vg (12

is obtained by replacing the wave functigrwith our poten-
tial field V. Hence, omitting constants we have
S=Im{V* VV} (13

which is, in fact, a Poynting vector for our system. With

aJ. ..
;XV(LJ) % (Vi j1= Vij-2) (14)

we obtain a Poynting vector, which in our system is given by

V?,j(vi,j+1_vi,j—1))

Vij(Vie1j = Visg))

S= Im(
Another, more intuitive way of obtainin§ is to study the
complex electrical effech. given byS.=UI*, and especially
P=R€[S.}, which is the measured electrical effect. Assigning
to P the direction of the current gives a vector

. _(Vi,’+1_vi,‘—1)* : _(V\,'+1_Vi(—1)*
popd I\ 7 Li\ 2Gwl+R)
- V. _(Vl—l, _Vi+1,')* - V. _(V\—l,'_vi+l,')*
1 — i\ 2GR

(16)

By realizing thatR is small and therefore negligible, and
suppressing the factore. in the denominator, we get

Vi (Vijer= Vij-0)
=Im{
Vij(Vi-1j = Vis1))

a _(Vi,+1_vw,'—l)*
i f

Vi j(Vi—l,'waLj)*
J J

P=R

17
which is equal taS.
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FIG. 10. Symmetries in the Bunimovich
billiard.

(d)

To illustrate the current distribution we show the case The four different symmetry classes in Fig. 10 are gener-
with only one external driving voltage in the grid as in Fig. ated by connecting a voltage to each of the four sections as
2(b) and save the multilead case for the next section. Ofn Fig. 11. The external voltages must be connected sym-
course, with only one external voltage present we break thenetrically, if the desired symmetry class is to be selected.
symmetry. As the frequency increases the lack of symmetryffhe phase of the driving voltages is then used to achieve
becomes, however, less and less prominent. Plots showirgymmetry or antisymmetry, with respect to the symmetry
flow patterns analogous to the quantum mechanical probabilines. One way to view this is by studying the modes given
ity current are displayed in Fig. 8. Similarities with the re- by each voltage separately, and then add them together by
sults of microwave measuremeiff§ and quantum mechani- means of superposition. In this way one understands why
cal calculationg17] are most striking. some modes are canceled and others not. For example, if one

drives equal currents into the billiard on each side of a line of
V. EXTRACTION OF SYMMETRIES symmetry, modes with a node on the symmetry line will

Identification of modes belonging to a certain Symmetryo_llsappear. At the same time, even wave functions are ampli-
class in a billiard is often required. An example is statisticsfied- ] . o
which many times refer to a particular symmetry class. As 1hus, we can define a “+” by connecting a voltage driving
discussed above, we have two ways of finding the charactef current into the billiard, and a “~" by connecting a voltage
istic modes. Consequently there are also two ways of selecflriving a current out of the billiard at a given time0. The
ing the modes belonging to a particular symmetry class. §|tuat|pn in F_lg. 10d), |solat|n_g th_e odd/odd wave fur_1<_:t|ons,

In the case of level statistics, the eigenvalue approacHS realized with thg _network.ln Fig. 11. We have vgnﬂed our
Egs.(10) and(11) in Sec. Ill, appears a convenient one from approach by expllqlt .numerlcal calculations. In doing so we
a computational point of view, since many modes are found'ave found that it is important that the external voltages are
in a relatively short time. Extraction of, for example, odd Placed and driven symmetrically with high precision. For
modes is done here by “desymmetrizing” the billiard. Dirich- €xample, displacing one or more of them gives rise to a
let boundary conditions are achieved by grounding the bilSuperposition of symmetry classes.
liard along the middle symmetry line, and then by studying !N the same way as proposed here, it should also be pos-
only one-half of the billiard. The desymmetrized billiard is Sible to extract states with a particular symmetry for cases
shown in Fig. 9. like microwave cavities, elastic membranes, and acoustic

Let us now turn to the other way of finding characteristic "'éSonators.
modes by driving the system by external voltages. This ap-
proach is, of course, more realistic when it comes to practical +E
measurements. It also appears quite elegant. To make the [T®_“' "}_@ﬁ
case a bit more general we now consider a network in the +E
shape of a full Bunimovich billiardFig. 10. The two lines
of symmetry run along the middle of the billiard, one in the
horizontal and one in the vertical direction, dividing the
Bunimovich billiard into four parts; top left, top right, bot-
tom left, and bottom right. By marking each section with
either a “+” or a “-,” we may specify the different symme-
tries. If the same sign occurs on each side of a symmetry +E
line, the wave function igven with respect to this line. On i !l E
the other hand, if the signs are different, the wave equation is
odd. The possibilities can be referred to as even/even, even/ FIG. 11. A stadium shaped grid giving the odd/odd symmetry
odd, odd/even, and odd/od@eferring to the horizontal/ class. The four different positions of the symi®hwith respect to
vertical direction. the voltage sources define the phases, in our case equal or opposite.

056206-6



EMULATION OF QUANTUM MECHANICAL BILLIARDS ... PHYSICAL REVIEW E 71, 056206(2005

08 T T T T T
FIG. 12. (Color online Statis-
0.6 § tics for the normalized angular
frequency spacingsw?, corre-
= sponding to the spacings between
IO-4 T eigenenergies in quantum me-

chanics. The curve is the Wigner-
Dyson distribution given by Eq.

0.2 ] (19); 1199 spacings for the half
billiard in Fig. 9 were used for
0 generating the histogram.
3
VI. STATISTICAL PROPERTIES P(s)=¢€"s (18

Statistical aspects are important signatures of quanturfpr the distribution of normalized spacings between
mechanical systems. In order to validate the present electrigigenenergies. On the other hand, for an irregular chaotic
network model we will compare its statistical predictions system with TRS one finds generally the Wigner-Dyson dis-
with the quantum case. Focus lies on the spacings betwegfpution
eigenenergies, distributions of wave function amplitudes and
intensities, and statistics for the quantum mechanical prob- s
ability current. Ideally our network system should follow the P(s) = ?exp(— ms14). (19)

same statistics as the QM system we intend to emulate. All
statistics presented below refer to the billiard in Fig. 2, with-As mentioned, in our case? corresponds to the QM energy

out and with external driving voltages, i.e., “closed” or £. Figure 12 shows the distribution of normalized level sepa-

“open.” rations for odd states, i.e., states in the half cavity without
For a classically integrable, i.e., nonchaotic, QM systemexternal driving voltages as in Fig. 9. Real values d8rare

with time reversal symmetr§TRS) one expects the Poisson computed from Eqs(10) and(11) in Sec. lll. As mentioned

distribution given by[1,2] previously
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FIG. 13. (Color onling (a) shows|Vi,j|2 for a regular resonant eigenmode dbglfor a chaotic resonant mode. The curveéhand (d)
is the Porter-Thomas distribution in EQO) for (a) and(b), respectively(e) and(f) show the phase of the “wave functiolf; for (a) and
(b). The behavior of the statistics (), i.e., the way the tail suddenly drops to zero, is a general characteristic for regular [b0@&k The

number of grid points is indicated on the horizontal and vertical axes.
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FIG. 14. (Color onling (a) shows\viyj\2 for a regular state witlw=26.65 rad/s, an¢th)—(e) the distributions for the real and imaginary
parts of the potential fielt; ;, before and after a rotation by the angledefined by Eq(24). The curves are Gaussian distributions, &3),
with parameters given in each subfigure. The number of grid points is indicated on the horizontal and vertical axes.

there are both regular and irregular solutions for the systems o

at hand. The good agreement between the computed distri- Plp) = ,z—e , (20

bution and the Wigner-Dyson expression tells us, however, vemp

that the states are almost exclusively chaotic with TRS.  for systems with TRS. For broken TRS the Thomas-Porter
In quantum mechanics wave function statistics for the dif-form is replaced by the exponential Rayleigh distribution

ferent modes are of obvious interest. For a billiard with area I

A a distributionP(p) may be produced, wheye=A|{?, giv- P(p)=€7. (21)

ing the probability of finding a certain intensity{?. P(p)  There is also the case of intermediate statistics as discussed

follows the well known Porter-Thomas distributidh, 2] in [19,20 and references within. Figure 13 shows statistics
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FIG. 15. (Color onling (a) shows|Vi'j|2 for an irregular state wittw=112.41 rad/s, antb)—(e) the corresponding distributions for the
real and imaginary parts of the potential fiald;, before and after a rotation by the angiegiven by Eq.(24). The curves are Gaussian
distributions, Eq(23), with parameters given in each subfigure. The number of grid points are indicated on the horizontal and vertical axes.

for two resonant modes for an open system, at low and highegular states, for example. To analyze this situation it is
frequencies, respectively. The high-frequency mode obviuseful to consider the general complex wave funcfith 20
ously obeys the Thomas-Porter distribution to a high degree
of accuracy. In view of the level statistics above chaotic be-
havior is to be expected. The low-frequency mode, on the
other hand, is an example of a regular mode and for this
reason it displays a characteristic dropoff behavior at high
intensities[10,20.

The solutions for the open billiard are complex and TRSwhereu is the real and and the imaginary part, which for
is, in principle, broken. In spite of this, the Thomas-Porterchaotic states are treated as two independent Gaussian fields.
distribution applies to a high degree of accuracy to the irFor later reference denote the Gaussian distribution as

Y=u+iv (22
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0.5
P(s) = ——er(20? (23)
oN2m 0.4}
whereo is the standard deviation andthe center value.
Intuitively the relative weights ofi andv indicate which ~ 03¢
kind of statistics a particular state obeys. If eitheor v is 2}
the dominant term, for example, we expect the Thomas- & o2
Porter distribution for an irregular state. On the handy if
andv have more or less equal weights we expect the Ray- 0.1
leigh distribution or an intermediate crossover form. To make
this statement valid we must, however, make sure that the 0 . .
real and imaginary parts in the wave function are statistically 0 2 4 6
independent as discussed [ih9,20. This is achieved by (@) 1Sl
multiplying the wave function by the phase facw@f. By 0.5
letting (- --) indicate the mean valuey can be written as
0.47
1 2(uv) )
@ 2arctar<<u>2_<v>2 : (24) 03
giving a rotation of all points by the anglein the complex %
plane. This rotation is in fact derived from the expression 0.2
(uv)=0, thus ensuring that the fields are also uncorrelated.
Note that one may instead make the imaginary part dominant 0.1
by adding one more rotation with an odd multipleref2. As .
indicated already, the Rayleigh distribution instead emerges _010 _5 0 5 10
when the real and the imaginary parts of the wave function (b) S,
are of equal magnitude. Hence, neither of the two fields can 05
be made dominant over the other, and the rotation above only
makes the fields statistically independent. 04l
The fact that the statistics for both real and imaginary '
parts of the amplitudes follow a Gaussian distribution has o0al
been verified for numerous resonant modes. Figures 14 and e '
15 show distributions for the real and imaginary parts of the a 02l
amplitudes for two typical modes, both before and after the '
rotation given by Eq(24). Obviously the real part dominates ol
by far over the imaginary one after the rotation. This ex- '
plains why the resonant modes obey distributions typical for
TRS like the Thomas-Porter distribution. In our computa- _010 _5 0 5 10
tions we have found that the phase appears to change con- © s,

tinuously, but as soon as a resonant eigenmode appears, the

wave pattern is close to real, i.e., the phase of the amplitude FiG. 16. (Color onling Statistics for a typical high-frequency

in each point is close to zero or. mode. The curve irfb) is given by Eq.(26), and the curves ific)
Finally we consider the quantum mechanical probabilityand(d) by Eq. (25). The fitting parameter is=2.0.

current for an open system, which also follows certain uni-

versa] statisticg for irregular statéﬁ),_Zl,ZZ. Regular states  §eyiation of the wave function. The value ofnay be com-

are discussed in Refi23]. One may either study the compo- teq from the solutio; ;, but herer will be treated as a

nents or the absolute value of the currgnif the net current  iging parameter, used merely to see if the statistics follow

is small the components should obey the generic form predicted by the theory.
) 1 i Figure 16 shows histograms for distributions for a typical
P(ia) = 5.€ dalf? (25  chaotic high-frequency resonant mode wititeplaced by

andj by S. The numerical results for our electric network
for chaotic stategd indicates the horizontal or the vertical obviously agree nicely with theoretical predictions for ran-
direction. At the same time, the absolute value follows thedom fields.
universal law

il (i VII. DISCUSSION AND CONCLUDING REMARKS
P(li}) = 5Ko (26) :

v In summary, we have proposed that electrical networks
whereKj is the modified Bessel function of the second kind, may be used for fundamental studies of wave function prop-
zeroth order, and is a function depending on the standard erties and transport in general and, more specifically, their

T
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mapping onto open quantum dots. By connecting each gri@ne may circumvent this problem by working with large
point to some light source, as for example light-emitting di-networks in which the eigenstates are more close packed.
odes, the wave patterns might be observed in real time. Th8uperconducting materials may then be useful to redRice
role of dissipation and breaking of TRS may also be studiecind dissipation.

in a controlled way via the resistances. One could also model A second way to realize our electric simulator is by using
any billiard; it is only a question of grounding certain grid active components, such as operational amplifiagj, to
points. In addition to the scientific case our network has obmjimic the behavior of the ordinary components. This second

vious pedagogical merits. _ » alternative is the one we believe to be more promising.
There are two waysat least for physically realizing our

net. A first straightforward one is to use passive components

(as in Fig. 11._Ideally the components should all be |_dent|cal ACKNOWLEDGMENTS

but for practical purposes we have made simulations with

randomized value$+10%) for the components. The grid We acknowledge discussions with Almas Sadreev, in par-
was still functional in this case. The demands on the perforticular in the initial phase of this project, with Jani Hakanen
mance of components are, however, high. Standard comp@bout computational issues and comparisons to his quantum
nents have problems in working over large frequency intermechanical calculations, and Lars Wanhammar about electric
vals as their performance deteriorates at higher frequenciesircuits.
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